Dr Sue Dyson MA VetMB DEO PhD FRCVS

Parkes R, Newton R & Dyson S. Is there an association between clinical features, response to diagnostic analgesia and radiological findings in horses with a magnetic resonance imaging diagnosis of navicular disease or other injuries of the podotrochlear apparatus? The Vet J. (2015) 204, 40-46

Greve L, Murray R & Dyson S. Subjective analysis of exercise-induced changes in back dimensions of the horse: The influence of saddle-fit, rider-skill and work-quality. The Vet J. doi.:10.1016/j.tvjl.2015.06.009
Dyson S.

Greve L & Dyson S.

Nagy A, Murray J & Dyson S.

Dyson S.

Musculoskeletal scintigraphy of the equine athlete. Seminars in nuclear medicine (2014) 44 (1) 4-14.

Nagy A, Murray J & Dyson S.

Horse, rider, venue and environment-related factors for elimination from Fédération Equestre International endurance rides due to lameness and metabolic reasons. Equine vet J (2014) 463 (3) 294-299.

Marneris D & Dyson S.

Clinical features, diagnostic imaging findings and concurrent injuries in 71 sports horses with suspensory branch injuries. Equine Vet Educ (2014) 26 (6) 312-321

Greve L & Dyson S.

Nagy A, Murray J & Dyson S.

Dyson S.

Are mesenchymal progenitor cells set to revolutionise management of musculoskeletal injuries in the horse? The Vet J (2013) 197 (3) 533-534

Dyson S.

Walker V, Dyson S & Murray R.

Biggi M & Dyson S.

Greve L & Dyson S.

Greve L & Dyson S.

Dyson S.

Lameness associated with mineralisation of the central tarsal bone and a small osseous cyst-like lesion in two sports horses J. Equine Vet Sci (2013) 33 (1) 51-56

Biggi M & Dyson S.

Parkes B, Newton R & Dyson S.

An investigation of risk factors for foot-related lameness in a United

Biggi M & Dyson S. High-field magnetic resonance imaging investigation of distal border fragments of the navicular bone in horses with foot pain. Equine vet J (2011) 43 (3) 302-308.

Smith M, Dyson S & Murray R. The appearance of the equine metacarpophalangeal region on high-field vs. standing low-field magnetic resonance imaging. Vet Radiol & Ultrasound (2011) 52 (1) 61-70.

Dyson S, Pool R, Blunden T & Murray R. The distal sesamoidean impar ligament: Comparison between its appearance on magnetic resonance imaging and histology of the axial third of the ligament. Equine vet J (2010) 42 (4) 332-339

Murray R, Blunden T, Branch M, Tranquille C, Dyson S, Parkin T & Goodship A.

Evaluation of age-related changes in the structure of the equine tarsometatarsal osteochondral unit. AJVR (2009) 70 (1) 30-36.

Dyson S.

Gillen A, Dyson S & Murray R.

Tranquille C, Blunden A, Dyson S, Parkin T & Murray R.

Nagy A, Bodo G, & Dyson S.

Girodroux M, Dyson S & Murray R.

Blunden T, Dyson S & Murray R.

Biggi M, Dyson S & Murray R.

Meehan L, Dyson S & Murray R.

Dyson S.

Dakin S, Dyson S, Murray R & Tranquille C.

Dakin S, Dyson S, Murray R & Newton R.

Nagy A & Dyson S.

Nagy A & Dyson S.

Magnetic resonance anatomy of the proximal metacarpal region of the horse described from images acquired from low-and high-field magnets. Vet Radiol & Ultrasound (2009) 50 (6) 595-605

Nagy A, Dyson S & Murray R.

Radiographic, scintigraphic and magnetic resonance imaging findings in the palmar processes of the distal phalanx. Equine vet J (2008) 40 (1) 57-63.

Robson K, Kristoffersen M & Dyson S.

Owen R, Dyson S, Kristoffersen M, Mair T & Singer E.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith M, Dyson S & Murray R.</td>
<td>Is a magic angle effect observed in the collateral ligaments of the distal interphalangeal joint or the oblique sesamoidean ligaments during standing magnetic resonance imaging? Vet Radiol & Ultrasound (2008) 49 (6) 509-515</td>
</tr>
</tbody>
</table>

Diagnosis and management of common suspensory lesions in the forelimbs and hindlimbs of sports horses. Clinical Techniques in Equine Practice (2007) 6 (3) 179-188.

Histopathology in horses with chronic palmar foot pain and age-matched

