THE liver has many essential functions within the body, including nutrient metabolism, removal of toxins and ammonia, protein synthesis (including coagulation factors), bile acid synthesis, vitamin storage, immunoregulation and bile excretion.

To achieve this, blood flow to the liver is vast, averaging 30ml/min/kg to 45ml/min/kg (Witte, 1976). The majority of this (80 per cent of the blood flow and 50 per cent of the oxygen requirements) is supplied by the portal vein and the remainder by the hepatic artery. Portosystemic shunts (PSS) are vascular anomalies that connect the portal circulation to the systemic circulation, bypassing some or all of the hepatic tissue. They can form as a result of a congenital abnormality, either as persistence after birth of the ductus venosus, or because of abnormal functional communications between the foetal hepatic vessels (vitelline system) and non-hepatic abdominal vessels (cardinal system, which later develops into the caudal vena cava and azygos vein). The former abnormality leads to an intrahepatic shunt and the latter to an extrahepatic shunt. Alternatively, shunts may be acquired, usually secondary to portal hypertension. This article will focus on congenital PSS (Table 1).

Diagnosis

Presenting complaints include:
- Poor growth/weight gain
- Drug (such as anaesthetic)
- Constipation (which may also cause the development of urinary calculi)
- Polyuria and polydipsia (PUPD) may also be evident
- Gastrointestinal signs, including vomiting
- Hypersalivation, particularly in cats (Figure 2)

Cryptorchidism is recognised in some dogs with PSS. Occasionally, other anomalies are found, such as heart murmurs. It is important to evaluate whether this is a flow murmur secondary to the shunt or represents a cardiac anomaly.

On routine serum biochemistry and haematology, changes are often subtle and may be difficult to interpret in a young, growing animal. Abnormalities may include abnormalities, with or without jaundice (Figure 3), and variable leukocytosis. Microcytosis may be underestimated on post-treatment samples due to red cell swelling and release of intracellular microcytosis and variable leucocytosis. Microcytosis is often observed in animals with PSS, and the cause is most likely to be multifactorial.

Theories include increases in blood ammonia (with or without other synergistic toxins), alterations in monoamine or amino acid neurotransmitters, or increased cerebral concentration of an endogenous benzodiazepine-like substance. Experimentally, none of these factors alone consistently initiates encephalopathic coma.

TABLE 1. Comparison of extrahepatic PSS and intrahepatic PSS (Tobias, 2003)

<table>
<thead>
<tr>
<th>Extrahepatic Shunt</th>
<th>Intrahepatic Shunts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most common (66 per cent to 75 per cent of PSS seen)</td>
<td>23 per cent to 33 per cent of PSS seen</td>
</tr>
<tr>
<td>Usually small breeds (particularly terriers)</td>
<td>Usually large breed dogs</td>
</tr>
<tr>
<td>Usually small breeds</td>
<td>Usually large breed dogs</td>
</tr>
</tbody>
</table>

Neurological abnormalities, including behavioural changes, lethargy, ataxia, circling, head pressing, blindness or seizures. These abnormalities may have gone unnoticed by owners, either because the changes are very subtle, or because they believe this behaviour to be normal for their new puppy/kitten. Hepatic encephalopathy is seen not uncommonly in animals with PSS, and the cause is likely to be multifactorial.

Hepatic encephalopathy is a cardiac anomaly. It is important to evaluate whether this is a flow murmur secondary to the shunt or represents a cardiac anomaly. In animals with PSS, and the cause is most likely to be multifactorial.

Figure 1. Cats with PSS may show copper coloured irises, which resolve on surgical occlusion of the shunt.

Figure 2. Cats with PSS may show copper coloured irises, which resolve on surgical occlusion of the shunt.
“thorn apple” crystals may be a false negative and so multiple samples may be required before they are detected. Additional tests are usually required to assess liver function in cases with PSS. Plasma ammonia can be assessed, but the sample should be transported on ice and analysed without delay since in-house analysers can be unreliable. Elevated ammonia typically demonstrates abnormal hepatic function, but a normal level does not rule out PSS and is seen in seven per cent to 21 per cent of dogs with PSS, particularly after fasting or with effective medical treatment (Center, 1990). Postprandial ammonia can be evaluated, but measurement of bile acids is more commonly performed.

Bile acids measurement requires no special sample handling, and their elevation in animals with PSS is the result of bile acids shunting away from the liver to the systemic circulation, avoiding re-uptake by the hepatocytes. Usually, bile acids are measured preprandially and then two hours after a fatty meal. In animals with PSS or poor liver function, postprandial bile acids will be markedly elevated compared to normal animals. Occasionally, preprandial bile acid levels are significantly elevated and, therefore, postprandial testing is not required.

Finally, because the liver is responsible for the synthesis of many clotting factors, the coagulation profile should be assessed where surgery is considered. Often, this is normal. However, given the limitations of conventional coagulation testing, it is still possible bleeding will be seen.

Imaging
Definitive diagnosis of a PSS requires visualisation, either directly at surgery or indirectly using a variety of diagnostic imaging modalities.

At the authors’ hospital, ultrasonographic examination is the modality of choice, and changes include hepatomegaly, decreased number of hepatic and portal veins in the parenchyma, detection of the anomalous vessel and abnormal flow using Doppler (Figures 5 to 7). Mesenteric portovenography can also be useful and involves catheterisation of a jejunal vein and injection of a water-soluble, radio-opaque, contrast agent observed under fluoroscopy (Figures 8 and 9). The disadvantage of this is the requirement for a laparotomy and the risk of thrombus formation in the catheterised vein. The authors reserve this technique for cases in which intraoperative location of the shunting vessel is challenging. Other techniques described, but less commonly used, include scintigraphy, computed tomography or magnetic resonance angiography.

Non-specific changes can also be seen, and include microhepatia, enlarged kidneys and urinary calculi. Although urate stones are radiolucent, secondary infection may lead to struvite deposition, which is radiopaque.

Medical management
The aims of medical management are to correct fluid, electrolyte and glucose imbalances, and to prevent hepatic encephalopathy. Occasionally, animals will present in hepatic encephalopathic crisis. Seizures should be treated initially with intravenous (0.5mg/kg) or rectal diazepam (1.0mg/kg to 2mg/kg), followed by a loading dose of a longer acting drug. The authors have tended to use phenobarbitone in dogs, 12mg/kg to 18mg/kg IV followed by standard oral doses of 2mg to 3mg/kg/day, and levomepromazine in cats, 20mg/kg q8h. However, given the potential for hepatotoxicity, one could consider the use of levetiracetam in both species if justified for use under the cascade.

Lactulose enemas (preferably as a 10 to 15-minute retention enema; three parts lactulose (20ml/kg in dogs) to seven parts water) rapidly decrease colonic bacteria, preventing further absorption of toxic substances. Intravenous antibiotics, such as clavulamic acid potentiated amoxicillin 20mg/kg IV q8h, will decrease the number of ammonia-producing bacteria in the gastrointestinal tract, reducing absorption. Some clinicians use metronidazole, but the hepatic metabolism of this drug should be considered and neurological side effects may be mistaken for encephalopathy. For these reasons, when metronidazole is desired, a lower dose should be used – for example, less than 7.5mg/kg. Electrolytes and glucose should be assessed and corrected using intravenous fluids spiked with potassium or dextrose as required, and changes in serum concentrations monitored hourly.

Importantly, no oral food should be provided while animals are severely encephalopathic to minimise substrate absorption, which could worsen clinical signs. Thiamine has also been recommended.

Management
Once animals are stabilised, the mainstay medical management comprises:

- Diet. The main aim is to provide moderate protein restriction to reduce ammonia production. Many commercially available liver diets also pro-

Photo: KOSTAS PAPASOULIOTIS.

Figure 2: Hyperaevulation may be evident, particularly in cats.

Figure 3: Microcytic anaemia may be seen.

Figure 4: The distinctive “thorn apple” appearance of ammonium biurate crystals in the urine of an animal with a congenital PSS.
provide L-carnitine, antioxidants, restricted copper and increased zinc. Normal fat metabolism should be maintained and the high energy available from fat avoids excessive protein catabolism. Occasionally, animals will be reluctant to eat these preparations, and a diet of rice or potato with high quality, highly digestible protein (such as cottage cheese, soya or white chicken meat) may suffice. Some controversy exists about protein restriction in young patients, given their need for protein for growth. The authors recommend that patients are provided with a diet with sufficient protein for growth (monitor serum albumin and increase the protein content of the diet if this is decreasing), but not enough to cause encephalopathic signs. A good-quality protein source can be added to a liver diet, or a higher protein diet can be selected if necessary.

- **Lactulose.** This works by decreasing colonic pH, increasing entrapment of ammonium, increasing faecal nitrogen excretion, inhibiting protein and amino acid metabolism, and decreasing intestinal transit time. The dosage is empirical, but should be titrated until two or three soft, but formed, stools per day are passed.

- **Antibiotics.** Once animals are no longer encephalopathic, oral antibiotics may be provided and the authors prefer ampicillin or amoxicillin. Occasionally, lower dose metronidazole may be used.

- **Regular, routine parasite control.**
- **Gastroprotectants.** Gas-trointestinal haemorrhage may be seen in patients with PSS. This is the equivalent of a high-protein meal, making encephalopathy more likely. Gastroprotectants are not used routinely and are reserved for patients with documented gastrointestinal bleeding, or a history and investigation that are highly suggestive. Medical management alone may be possible and up to one third of dogs will do well. Ulti-
mately, once the animal is stabilised medically, the authors prefer to pursue surgical correction where possible, and anecdotaly believe that the low postoperative incidence of seizures seen at their hospital is due to good pre- and postoperative medical management.

Summary

PSS are congenital or acquired vascular abnormalities that connect the portal and systemic circulation. Haematological and serum biochemical changes may be suggestive of PSS, but definitive diagnosis is achieved via imaging or surgical evaluation. Medical management should be initiated in the first instance, the mainstay of which is an appropriate diet, lactulose and antibiotics.

References and further reading

KELLY BOWLY qualified from the University of Edinburgh in 2005. She spent two years in small animal practice in Nottinghamshire and one year as a junior clinical training scholar at the RVC. In 2008, she began an EDVS-approved residency in small animal surgery at the University of Bristol, where her interests include soft tissue surgery, particularly reconstructive surgery and management of trauma patients.

ED FRIEND graduated from the RVC in 1996 and worked in a mixed practice in Buckinghamshire for a year, before undertaking training positions at the RVC, University of Liverpool and University of Cambridge. He became a diplomate of the EDVS and a European specialist in small animal surgery in 2003. He joined the University of Bristol surgery department as a soft tissue surgeon in 2009 and enjoys ear, nose and throat surgery, thoracic surgery, trauma cases and wound management.

KATE MURPHY is a senior clinical fellow in small animal emergency medicine and intensive care at the University of Bristol. She is interested in all aspects of internal medicine, but particularly enjoys the challenges posed by more critically ill patients.